Molecular Dynamics Modeling and Simulation of Diamond Cutting of Cerium

نویسندگان

  • Junjie Zhang
  • Haibing Zheng
  • Maobing Shuai
  • Yao Li
  • Yang Yang
  • Tao Sun
چکیده

The coupling between structural phase transformations and dislocations induces challenges in understanding the deformation behavior of metallic cerium at the nanoscale. In the present work, we elucidate the underlying mechanism of cerium under ultra-precision diamond cutting by means of molecular dynamics modeling and simulations. The molecular dynamics model of diamond cutting of cerium is established by assigning empirical potentials to describe atomic interactions and evaluating properties of two face-centered cubic cerium phases. Subsequent molecular dynamics simulations reveal that dislocation slip dominates the plastic deformation of cerium under the cutting process. In addition, the analysis based on atomic radial distribution functions demonstrates that there are trivial phase transformations from the γ-Ce to the δ-Ce occurred in both machined surface and formed chip. Following investigations on machining parameter dependence reveal the optimal machining conditions for achieving high quality of machined surface of cerium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomistic and Experimental Investigation of the Effect of Depth of Cut on Diamond Cutting of Cerium

The ultra-precision diamond cutting process exhibits strong size effects due to the ultra-small depth of cut that is comparable with the cutting edge radius. In the present work, we elucidate the underlying machining mechanisms of single crystal cerium under diamond cutting by means of molecular dynamics simulations, with an emphasis on the evaluation of the effect of depth of cut on the cuttin...

متن کامل

Simulation of Nano-scale Cutting with Molecular Dynamics

The simulation of nanometric cutting of copper with diamond cutting tools, with the Molecular Dynamics method is considered. A 2D model of orthogonal nano-scale cutting is presented and the influence of the depth of cut and tool rake angle on chip morphology and cutting forces is investigated. For the analysis, three different depths of cut, namely 10Å, 15Å and 20 Å and four tool rake angles, n...

متن کامل

Effects of T208E activating mutation on MARK2 protein structure and dynamics: Modeling and simulation

Microtubule Affinity-Regulating Kinase 2 (MARK2) protein has a substantial role in regulation of vital cellular processes like induction of polarity, regulation of cell junctions, cytoskeleton structure and cell differentiation. The abnormal function of this protein has been associated with a number of pathological conditions like Alzheimer disease, autism, several carcinomas and development of...

متن کامل

Exploring the Interaction Mechanism of Coumarin with Bovine β-Casein: Spectrofluorometric and Molecular Modeling Studies

This paper is designed to examine the binding behavior of Coumarin with bovine -casein (βCN) through fluorescence spectroscopy and molecular modeling techniques. The data analysis on fluorescence titration experiments at various temperatures represents the enthalpy driven nature for the formation of Coumarin–βCN complex and the prevailed role of hydrogen bonds and van der Waals interactions in...

متن کامل

Planar Molecular Dynamics Simulation of Au Clusters in Pushing Process

Based on the fact the manipulation of fine nanoclusters calls for more precise modeling, the aim of this paper is to conduct an atomistic investigation for interaction analysis of particle-substrate system for pushing and positioning purposes. In the present research, 2D molecular dynamics simulations have been used to investigate such behaviors. Performing the planar simulations can provide a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017